
12/19/2014 INFO 202 - Case Study Semerdjian, John

Strava

Overview
This is a case study of Strava, a personal-fitness tracking app that lets you record,
analyze, and share your running and cycling data. The resources organized by
Strava are the metadata associated with a workout; the social interactions users
have on their site; and the map routes created by users. Strava does large-scale
digital organizing and is just one of hundreds of apps within the fitness tracking
domain.

What distinguishes Strava from its competitors is its elegant user interface and
“social fitness” platform. In addition to providing useful statistics and visualizations
of exercise data, Strava allows users to socialize, motivate, and compete via online
and mobile apps. Their business model is largely based on selling premium features
in their mobile and web-based apps. Individuals can use these enhanced features to
improve their performance and gain new insights into their workout routines. In
addition to the mobile app and web client, Strava provides an API that allows 3rd
party apps to integrate with their services. These services allow users to share their
data on personal sites, provide enhanced analytical tools, and many other features.

Recently, the city of Portland, OR purchased an annual subscription to Strava’s data
through a new program called Strava Metro. Armed with anonymised data about
city ridership, officials are now able to plan the construction of new bike lanes with
greater confidence in their decisions. With dozens of other cities also interested in
Strava Metro, I became interested in the use of personal fitness data for civic
planning. Since Strava’s API wasn’t initially designed with civic planners in mind, I’m
interested in exploring how services like Strava can transform their APIs to allow
civic planners to make better use of their data.

Tags: Computational and Automated Resource Description (chapter 4), Naming
Resources (chapter 3.4)

What is being organized?
Strava designed three user interfaces – web app, API, mobile app – to meet the
needs of its users. In addition to the exercise metadata, social interactions, and
labeled map routes described above, Strava also organizes nine resources through
their API: an authentication protocol (OAuth2), athletes (Strava users); activities
(runs, rides, etc.); clubs (groups of athletes); gear (equipment used during activity);
segments (specific sections of road); segment efforts (portion of a ride in a
segment); streams (raw data associated with an activity); and uploads (submitting
raw person data from a 3rd party to Strava). Each API resource includes several
resource descriptions. For example, the “athlete” resource includes descriptions
such as name, sex, location, and the number of friends or followers. Each athlete can
also be associated with a clubs, bikes, and even shoes. The “activity” resource
includes descriptions of a specific activity recorded by the user, and is associated
with the “segment effort” and “athlete” resources.

12/19/2014 INFO 202 - Case Study Semerdjian, John

The mobile app includes only a subset of the data from the full-scale web version,
but provides real-time exercise data that is organized and communicated back to
the user visually. The web client provides the greatest visual experience for the user
while the API provides highly granular data that can be used as an input for a
separate computational task.

Why is it being organized?
Exercise data is being organized to help users gain insights into their exercise
routines and promote interaction with the app. The API resources are being
organized to facilitate the exchange of data between software applications, which
are primarily focused on enhancing the individual user’s experience. Most Strava
users aren’t directly aware of the existence of an API, and may only experience it
when asked by 3rd party software for permission to access their data. The Strava API
is of interest primarily to software developers who are building applications. By
providing a well-documented and structured API, Strava can empower software
developers to building supportive interactions with existing user data.

How much is it being organized?
Users must start the app in order for Strava to begin collecting exercise data, which
is why Strava must design an experience that promotes interactions with their
service. Strava also allows users to bulk upload data collected for other decides or
apps, and also to delete specific resources -- e.g. comments with specific users,
workouts, and mapped routes. Since the data is collected through a mobile and web
apps, Strava can quickly organize, analyze, and display the data back to the user. One
of Strava’s greatest competitive advantages is their ability to organize all the data
collected and generate new resource descriptions effortlessly. With a large and
highly engaged user community, Strava is able to get hand labeled route and
segment data for free.

When is it being organized?
Resources are organized the moment the app is started. Geo-location data is fed to
Strava through the user’s smart phone or GPS device. By combining resource
descriptions like start and end time, Strava can create new descriptions like average
speed. While riding a bike, users can see their location, elapsed time, average speed,
acceleration, elevation, and even heart rate directly on their mobile device. By
organizing and displaying this information in real-time, users can adjust their
exercise accordingly. Once the ride is over, data is sent to Strava’s servers and
processed. A detailed report about their routine can be found on their mobile device
or web app, with raw data made available through the API.

How or by whom is it being organized?
Resources are organized both by Strava (computationally) and by users. Following
the ride or run, users must enter a name to identify their workout. Users can also
hand labels common routes or stretches of road with unique identifiers. For
example, the stretch of Telegraph between Oregon St. and Haste is known as the

12/19/2014 INFO 202 - Case Study Semerdjian, John

“Sather Road Climb.” There is no controlled vocabulary for assigning segment
identifiers by users. Strava organizes the data visually on a dashboard for users to
interact with and digitally through the API for developers to use.

Other considerations.
Strava is not making use of any air quality or traffic data. Integrating these sources
of information could provide additional value to users who are already accessing it
through a separate service. Strava could also categorize and rank them by level of
difficulty. These additional descriptions would allow users yet another means of
searching and retrieving.

12/19/2014 INFO 202 - Case Study Semerdjian, John

Strava API Transformation

Strava recently created a new service called Strava Metro for “departments of
transportation and city planners, as well as advocacy groups and corporations [to]
make informed and effective decisions when planning, maintaining, and upgrading
cycling and pedestrian corridors.”1 Anonymized cycling data is provided to cities in
bulk and is formatted using GIS software. With some minor modifications to the
Strava API, cities can gain direct access to anonymized data in real-time.

The “Activities” API resource contains 50 resource descriptions.2 Biometric
descriptions (e.g. “calories” and “heart rate”) and social descriptions (e.g.
“has_kudoed”, “comment_count”, “photo_count”) are unnecessary. Descriptions for
“average_speed”, longitude and latitude (“start_latlng”, “end_latlng”), and
“start_date” are important, however. In the Appendix, I highlight in yellow
important descriptions and in red, unimportant descriptions.

Since the data provided through the API is very granular, the resolution could be
reduced to protect the anonymity of users. The “athlete” object provides a unique
identifier for each user. Instead, Strava could populate this field with a random
string or remove it entirely. City planners could use the ride ID instead to track the
progress of the user.

City planners may be interested primarily in how commuters use roads to travel
between home and work. Strava allows users to manually label the type of ride,
which is also provided through the API. In addition to this labeled data, Strava could
use clustering algorithms to classify the ride as a commute if users aren’t completing
this field manually. Labeled data for the “commute” description could be used to
predict whether an unlabeled ride is also a type of commute. For planners who need
greater certainty in the type of ride, Strava could easily provide the prediction value
for their binary classification algorithm.

By examining riding patterns through city streets, Strava could also detect unsafe
intersections. By creating a new description for street interaction and labeling it
with the name of the streets, time, and a global safety score, Strava could provide
additional value to city planners. City planners could then cross reference these
intersections with both longitude/latitude and labeled street name with internal
datasets for road safety.

With just a few minor adjsutments, Strava’s powerful API could give cities greater
access to information while still preserving the privacy of its users.

1 http://metro.strava.com/
2 http://strava.github.io/api/v3/activities/

12/19/2014 INFO 202 - Case Study Semerdjian, John

Strava API Transformation

Appendix
id: integer

resource_state: integer
indicates level of detail

external_id: string
provided at upload

athlete: object
meta or summary representation of the athlete

name: string
description: string

distance: float
meters

moving_time: integer
seconds

elapsed_time: integer
seconds

total_elevation_gain: float
meters

type: string
activity type, ie. ride, run, swim, etc.

start_date: time string
start_date_local: time string
time_zone: string
start_latlng: [latitude, longitude]
end_latlng: [latitude, longitude]
location_city: string
location_state: string
location_country: string
achievement_count: integer
kudos_count: integer
comment_count: integer
athlete_count: integer
photo_count: integer

map: object
detailed representation of the route

trainer: boolean
commute: boolean
manual: boolean
private: boolean
flagged: boolean

workout_type: integer
for runs only, 0 -> ‘default’, 1 -> ‘race’, 2 -> ‘long run’, 3 ->

http://strava.github.io/api/v3/athlete/#meta
http://strava.github.io/api/v3/athlete/#summary

12/19/2014 INFO 202 - Case Study Semerdjian, John

Strava API Transformation

‘intervals’

gear_id: string
corresponds to a bike or pair of shoes included in athlete details

gear: object
gear summary

average_speed: float
meters per second

max_speed: float
meters per second

average_cadence: float
RPM, if provided at upload

average_temp: integer
degrees Celsius, if provided at upload

average_watts: float rides only

weighted_average_watts: integer rides with power meter data only
similar to xPower or Normalized Power

kilojoules: float rides only
uses estimated power if necessary

device_watts: boolean
true if the watts are from a power meter, false if estimated

average_heartrate: float only if recorded with heartrate
average over moving portion

max_heartrate: integer only if recorded with heartrate

calories: float
kilocalories, uses kilojoules for rides and speed/pace for runs

truncated:
integer
only present if activity is owned by authenticated athlete, returns
0 if not truncated by privacy zones

has_kudoed: boolean
if the authenticated athlete has kudoed this activity

segment_efforts:
array of objects
array of summary representations of the segment efforts, segment
effort ids must be represented as 64-bit datatypes

splits_metric: array of metric split summaries
running activities only

splits_standard: array of standard split summaries
running activities only

best_efforts: array of best effort summaries
running activities only

http://strava.github.io/api/v3/athlete/#detailed
http://strava.github.io/api/v3/gear/#summary
http://strava.github.io/api/v3/efforts/#summary

	annotated-Case-Study.docx.pdf
	annotated-Case-Study-Transform.docx.pdf

